Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tamoxifen attenuates development of lithium-induced nephrogenic diabetes insipidus in rats.

Lithium is widely used in treatment of bipolar affective disorders but often causes nephrogenic diabetes insipidus (NDI), a disorder characterized by severe urinary-concentrating defects. Lithium-induced NDI is caused by lithium uptake by collecting duct principal cells and altered expression of aquaporin-2 (AQP2), which are essential for water reabsorption of tubular fluid in the collecting duct. Sex hormones have previously been shown to affect the regulation of AQP2, so we tested whether tamoxifen (TAM), a selective estrogen receptor modulator, would attenuate lithium-induced alterations on renal water homeostasis. Rats were treated for 14 days with lithium, and TAM treatment was initiated 1 wk after onset of lithium administration. Lithium treatment resulted in severe polyuria and reduced AQP2 expression, which were ameliorated by TAM. Consistent with this, TAM attenuated downregulation of AQP2 and increased phosphorylation of the cAMP-responsive element-binding protein, which induced AQP2 expression in freshly isolated inner-medullary collecting duct suspension prepared from lithium-treated rats. In conclusion, TAM attenuated polyuria dose dependently and impaired urine concentration and downregulation of AQP2 protein expression in rats with lithium-induced NDI. These findings suggest that TAM is likely to be a novel therapeutic option for lithium-induced NDI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app