Add like
Add dislike
Add to saved papers

MiR-200a negatively regulates TGF-β 1 -induced epithelial-mesenchymal transition of peritoneal mesothelial cells by targeting ZEB1/2 expression.

Although epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells was recognized as the key process of peritoneal fibrosis, which is a major cause of peritoneal failure related to peritoneal dialysis (PD), mechanisms underlying these processes remain largely unknown. In this study, we found that miR-200a was significantly downregulated in peritoneal tissues with fibrosis in a rat model of PD. In vitro, transforming growth factor (TGF)-β1 -induced EMT, identified by de novo expression of α-smooth muscle actin and a loss of E-cadherin in human peritoneal mesothelial cells (HPMCs), was associated with downregulation of miR-200a but upregulation of zinc finger E-box-binding homeobox 1/2 (ZEB1/2), suggesting a close link between miR-200a and ZEB1/2 in TGF-β1 -induced EMT. It was further demonstrated that miR-200a was able to bind to the 3'UTR of ZEB1/2, and overexpression of miR-200a blocked TGF-β1 -induced upregulation of ZEB1/2 and, therefore, inhibited EMT and collagen expression. In contrast, overexpression ZEB1/2 blocked miR-200a inhibition of EMT and collagen expression in HMPCs. In conclusion, miR-200a could negatively regulate TGF-β1 -induced EMT by targeting ZEB1/2 in peritoneal mesothelial cells. Blockade of EMT in HPMCS indicates the therapeutic potential of miR-200a as a treatment for peritoneal fibrosis associated with PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app