Add like
Add dislike
Add to saved papers

Multi-Omics for Biomarker Discovery and Target Validation in Biofluids for Amyotrophic Lateral Sclerosis Diagnosis.

Amyotrophic lateral sclerosis (ALS) is a rare but usually fatal neurodegenerative disease characterized by motor neuron degeneration in the brain and the spinal cord. Two forms are recognized, the familial that accounts for 5-10% and the sporadic that accounts for the rest. New studies suggest that ALS is a highly heterogeneous disease, and this diversity is a major reason for the lack of successful therapeutic treatments. Indeed, only two drugs (riluzole and edaravone) have been approved that provide a limited improvement in the quality of life. Presently, the diagnosis of ALS is based on clinical examination and lag period from the onset of symptoms to the final diagnosis is ∼12 months. Therefore, the discovery of robust molecular biomarkers that can assist in the diagnosis is of major importance. DNA sequencing to identify pathogenic gene variants can be applied in the cases of familial ALS. However, it is not a routinely used diagnostic procedure and most importantly, it cannot be applied in the diagnosis of sporadic ALS. In this expert review, the current approaches in identification of new ALS biomarkers are discussed. The advent of various multi-omics biotechnology platforms, including miRNomics, proteomics, metabolomics, metallomics, volatolomics, and viromics, has assisted in the identification of new biomarkers. The biofluids are the most preferable material for the analysis of potential biomarkers (such as proteins and cell-free miRNAs), since they are easily obtained. In the near future, the biofluid-based biomarkers will be indispensable to classify different ALS subtypes and understand the molecular heterogeneity of the disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app