Journal Article
Review
Add like
Add dislike
Add to saved papers

Electrochemical processes on solid shaped nanoparticles with defined facets.

Chemical Society Reviews 2018 Februrary 6
This 2007 Chemistry Nobel prize update covers scientific advances of the past decade in our understanding of electrocatalytic processes on surfaces of nanoscale shape-controlled polyhedral solids. It is argued that the field of chemical reaction processes on solid surfaces has recently been paying increasing attention to the fundamental understanding of electrified solid-liquid interfaces and toward the operando study of the minute fraction of catalytically active, structurally dynamic non-equilibrium Taylor-type surface sites. Meanwhile, despite mounting evidence of acting as structural proxies in some cases, the concept of catalytic structure sensitivity of well-defined nanoscale solid surfaces continues to be a key organizing principle for the science of shape-controlled nanocrystals and, hence, constitutes a central recurring theme in this review. After addressing key aspects and recent progress in the wet-chemical synthesis of shaped nanocatalysts, three areas of electrocatalytic processes on solid shape-controlled nanocrystals of current scientific priority are discussed in more detail: the oxygen electroreduction on shape-controlled Pt-Ni polyhedra with its technological relevance for low temperature fuel cells, the CO2 electroreduction to hydrocarbons on Cu polyhedra and the puzzling interplay between chemical and structural effects, and the electrocatalytic oxygen evolution reaction from water on shaped transition metal oxides. The review closes with the conclusion that Surface Science and thermal catalysis, honored by Ertl's Nobel prize a decade ago, continue to show major repercussions on the emerging field of Interface Science.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app