Add like
Add dislike
Add to saved papers

Simultaneous detection of Escherichia coli O157:H7, Staphylococcus aureus and Salmonella by multiplex PCR in milk.

3 Biotech 2018 January
Escherichia coli O157:H7, Staphylococcus aureus , and Salmonella are food-borne pathogens that cause serious gastrointestinal illness and frequent food safety accidents. This study aimed to develop a practical multiplex polymerase chain reaction (mPCR) technique for the simultaneous detection of these food-borne pathogens in culture broth and artificial food matrix. Pathogen-specific DNA sequences in the rfb E, nuc , and inv A genes were used as targets to design primers for the identification of E. coli O157:H7, S. aureus , and Salmonella, respectively. As expected, the method produced species-specific bands of amplified products without any contaminating non-specific bands. The highest species specificity was established with primer concentrations of 0.1, 0.2, and 0.4 μM for E. coli O157:H7, S. aureus , and Salmonella , correspondingly. The detection sensitivity of this assay was 103 CFU/mL in culture broth, and the limit of detection was consistent with singleplex PCR in the food sample. The mPCR assay proposed here is an easy and convenient detection method, which will be valuable for microbial epidemiology and food safety investigations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app