Add like
Add dislike
Add to saved papers

Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs).

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent pollutants having mutagenic and carcinogenic properties. Microbial metabolism is an alternative approach for removal of PAHs from polluted environment. Mixed bacterial cultures DAK11 capable for degrading mixture of PAHs was developed from long term polluted marine sediments. DAK11 was able to degrade 500 mg/L of mixture of four PAHs and their degradation efficiency was enhanced by supplementing commercially available NPK fertilizer (0.1%, w/v). Anionic surfactant SDS has enhanced the degradation of PAHs, but DAK11 growth was inhibited in presence of cationic surfactant CTAB. Heavy metals have decreased the rate of degradation, while it was completely inhibited in the presence of Zn2+ and CrO4 2- (1mM). DAK11 was able to degrade PAHs in the presence of mono-aromatic hydrocarbons, lubricant oil and diesel. Lower molecular weight aromatic and aliphatic compounds were identified using GC-MS during metabolism of mixture of PHAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app