COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparison of soft tissue artifact and its effects on knee kinematics between non-obese and obese subjects performing a squatting activity recorded using an exoskeleton.

Gait & Posture 2018 March
BACKGROUND: Rigid attachment systems are one of the methods used to compensate for soft tissue artifact (STA) inherent in joint motion analyses.

RESEARCH QUESTION: The goal of this study was to quantify STA of an exoskeleton design to reduce STA at the knee, and to assess the accuracy of 3D knee kinematics recorded with the exoskeleton in non-obese and obese subjects during quasi-static weight-bearing squatting activity using biplane radiography.

METHODS: Nine non-obese and eight obese subjects were recruited. The exoskeleton was calibrated on each subject before they performed a quasistatic squatting activity in the EOS® imaging system. 3D models of exoskeleton markers and knee bones were reconstructed from EOS® radiographs; they served to quantify STA and to evaluate differences between the markers and bones knee kinematics during the squatting activity.

RESULTS: The results showed that STA observed at the femur was larger in non-obese subjects than in obese subjects in frontal rotation (p = 0.004), axial rotation (p = 0.000), medio-lateral displacement (p = 0.000) and antero-posterior displacement (p = 0.019), while STA observed at the tibia was lower in non-obese subjects than in obese subjects for the three rotations (p < 0.05) and medio-lateral displacement (p = 0.015). Differences between the markers and bones knee kinematics increased with knee flexion and were similar in both groups, except for abduction-adduction: 4.9° for non-obese subjects against 2.3° for obese subjects (p = 0.011).

SIGNIFICANCE: This study demonstrated that STA at the femur and its impact on knee abduction-adduction using a specific exoskeleton were greater among non-obese subjects than obese subjects, which is encouraging for future biomechanical studies on pathologies such as osteoarthritis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app