Add like
Add dislike
Add to saved papers

Protective effect of a newly developed fucose-deficient recombinant antithrombin against histone-induced endothelial damage.

Antithrombin is expected to modulate both prothrombotic and proinflammatory reactions in sepsis; vascular endothelium is the primary target. In the present study, we sought to evaluate the protective effects of a newly developed fucose-deficient recombinant antithrombin. Endothelial cells were treated in vitro with histone H4 to induce cellular damage. Low to high doses of either plasma-derived antithrombin or recombinant thrombomodulin were used as treatment interventions. Morphological change, apoptotic rate, cell viability, cell injury, and syndecan-4 level in the medium were evaluated. Immunofluorescent staining with anti-syndecan-4 was also performed. Both types of antithrombin reduced cellular damage and apoptotic cell death. Both plasma-derived and recombinant antithrombin improved cell viability and reduced cellular injury when administered at a physiological concentration or higher. Syndecan-4 staining became evident after treatment with histone H4, and both antithrombins suppressed the staining intensity at similar levels. The syndecan-4 level in the medium was significantly decreased by both antithrombins. None of the indicators showed a significant difference between plasma-derived and recombinant antithrombin. In conclusion, both recombinant and plasma-derived antithrombin can protect vascular endothelial cells. Recombinant antithrombin may represent a useful new therapeutic agent for sepsis-associated vascular damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app