Add like
Add dislike
Add to saved papers

Dihydroartemisinin ameliorates sepsis-induced hyperpermeability of glomerular endothelium via up-regulation of occludin expression.

Sepsis, the systemic inflammatory responses after infection, remains a serious cause of morbidity and mortality in critically ill patients. The anti-malarial agent dihydroartemisinin (DHA) has been shown to be anti-inflammatory. In this study, we examined the effects of DHA on sepsis-induced acute kidney injury (AKI) and explored the mechanism underlying its mode of action in AKI. In a lipopolysaccharide (LPS)-induced mouse model, we observed that DHA treatment ameliorated glomerular injury, and relieved elevation of the urine albumin to creatinine ratio (UACR) and serum creatinine. At a concentration of 25 μM, DHA had no effect on overall cellular viability or apoptosis in assays with human renal glomerular endothelial cells (HRGECs), but significantly inhibited the tumor necrosis factor-α (TNF-α)-induced hyperpermeability of HRGEC monolayers. We found that TNF-α decreases the expression of the junctional protein occludin in HRGECs, which is reversed by DHA. Taken together, our results demonstrate that DHA decreases permeability of the glomerular endothelium by maintenance of occludin expression. This suggests DHA may have therapeutic utility in sepsis-induced AKI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app