Add like
Add dislike
Add to saved papers

How does temperature govern mechanisms of starch changes during extrusion?

Carbohydrate Polymers 2018 March 16
Potato and pea starches were processed on a twin-screw extruder under various moisture and thermomechanical conditions, chosen to keep material temperature Te close to starch melting temperature, Tm , whilst avoiding die expansion. Extruded rods were analysed by asymmetrical flow field flow fractionation coupled with light scattering, X-ray diffraction, DSC, and light microscopy with image analysis. Molar mass of extruded materials decreased more for potato than for pea starch, when specific mechanical energy SME increased, likely because of larger amylopectin sensitivity to shear. No crystallinity was detected when ΔT = (Tm -Te ) ≤ 0. Residual gelatinization enthalpy ΔHg decreased with ΔT. As illustrated by larger ΔT values for ΔHg  = 0, decreasing moisture favored melting, likely by increasing solid friction. The fraction of granular remnants of potato starch was inversely correlated to SME. These results could be explained by considering starch melting during extrusion as a suspension of solid particles embedded in a continuous amorphous matrix.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app