Add like
Add dislike
Add to saved papers

Synergistic effect of carbon nanotubes and graphene for high performance cellulose acetate membranes in biomedical applications.

Comparative evaluation of innovative combinations of three types of carbon nanomaterial (CNM) highlighted membranes with important potential for biomedical applications. Non-solvent induced phase separation coupled with ultrasound technique was used to generate membranes comprised of (i) cellulose acetate/ammonia functionalized carbon nanotubes (CA/CNT), (ii) cellulose acetate/ammonia functionalized graphene oxide (CA/GO), and (iii) cellulose acetate/CNT-GO. Structural, topographical and thermal features as well as water and ethanol permeation, bovine serum albumin (BSA) and haemoglobin (Hb) rejection were evaluated. Biocompatibility in terms of cytotoxicity, cell proliferation and adhesion were explored using a 3T3E1 cell line. The formation of amorphous structures, within which the CNMs were well dispersed, facilitated the development of smoother topographies. Addition of CNMs generated morphological changes influencing a decrease in water and ethanol fluxes. Furthermore, CNMs concentrated within the membrane skin layer exhibited repellent effects against BSA and Hb molecules and excellent cytocompatibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app