Add like
Add dislike
Add to saved papers

A novel approach for fabricating nanocomposite materials by embedding stabilized core-shell micelles into polysaccharide cryogel matrix.

We report a novel approach for fabricating nanocomposite polysaccharide-based carriers for sustained delivery of poorly-water-soluble drugs by embedding stabilized core-shell micelles (SPM) possessing hydrophobic cores into super-macroporous hydroxypropyl cellulose (HPC) cryogels. Firstly, nano-sized SPM were synthesized by loading and photochemical crosslinking of pentaerythritoltetraacrylate (PETA) in poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO19 PPO29 PEO19 ) core-shell micelles. Next, HPC cryogels containing different amount of SPM were fabricated by combination of cryogenic treatment and photo-crosslinking. A crosslinking agent, N,N'-methylenebisacrylamide, was used to enhance the density of polymer network. The effect of SPM concentration on gel fraction yield, swelling degree, cryogel morphology and mechanical properties were studied. Nanocomposite cryogels were loaded with curcumin and their encapsulation efficiency and drug release profile as a function of SPM content were investigated. The cytotoxic effect of blank and curcumin loaded nanocomposite cryogels was assessed as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app