Add like
Add dislike
Add to saved papers

KEAP1 Editing Using CRISPR/Cas9 for Therapeutic NRF2 Activation in Primary Human T Lymphocytes.

Oxidant stress modifies T lymphocyte activation and function. Previous work demonstrated that murine T cell-specific kelch like-ECH-associated protein 1 ( Keap1 ) deletion enhances antioxidant capacity and protects from experimental acute kidney injury. In this study, we used CRISPR technology to develop clinically translatable human T cell-specific KEAP1 deletion. Delivery of KEAP1 exon 2 specific Cas9:guide RNA in Jurkat T cells led to significant (∼70%) editing and upregulation of NRF2-regulated antioxidant genes NADPH dehydrogenase quinone 1 ( NQO1 ) (up to 11-fold), heme oxygenase 1 ( HO1 ) (up to 11-fold), and GCLM (up to 2-fold). In primary human T cells, delivery of KEAP1 exon 2 target site 2-specific ATTO 550-labeled Cas9:guide RNA edited KEAP1 in ∼40% cells and significantly ( p ≤ 0.04) increased NQO1 (16-fold), HO1 (9-fold), and GCLM (2-fold) expression. To further enrich KEAP1 -edited cells, ATTO 550-positive cells were sorted 24 h after electroporation. Assessment of ATTO 550-positive cells showed KEAP1 editing in ∼55% cells. There was no detectable off-target cleavage in the top three predicted genes in the ATTO 550-positive cells. Gene expression analysis found significantly ( p ≤ 0.01) higher expression of NQO1 mRNA in ATTO 550-positive cells compared with control cells. Flow cytometric assessment showed increased ( p ≤ 0.01) frequency of CD4-, CD25-, and CD69-expressing KEAP1 edited cells whereas frequency of CD8- ( p ≤ 0.01) and IL-17- ( p ≤ 0.05) expressing cells was reduced compared with control cells. Similar experimental conditions resulted in significant KEAP1 editing, increased antioxidant gene expression, and frequency of CD69 and IL-10 positive cells in highly enriched KEAP1 -edited regulatory T cells. KEAP1 -edited T cells could potentially be used for treating multiple human diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app