Add like
Add dislike
Add to saved papers

Could seasonally deteriorating environments favour the evolution of autogamous selfing and a drought escape physiology through indirect selection? A test of the time limitation hypothesis using artificial selection in Clarkia.

Annals of Botany 2018 March 15
Background and Aims: The evolution of selfing from outcrossing may be the most common transition in plant reproductive systems and is associated with a variety of ecological circumstances and life history strategies. The most widely discussed explanation for these associations is the reproductive assurance hypothesis - the proposition that selfing is favoured because it increases female fitness when outcross pollen receipt is limited. Here an alternative explanation, the time limitation hypothesis, is addressed, one scenario of which proposes that selfing may evolve as a correlated response to selection for a faster life cycle in seasonally deteriorating environments.

Methods: Artificial selection for faster maturation (early flowering) or for low herkogamy was performed on Clarkia unguiculata (Onagraceae), a largely outcrossing species whose closest relative, C. exilis, has evolved higher levels of autogamous selfing. Direct responses to selection and correlated evolutionary changes in these traits were measured under greenhouse conditions. Direct responses to selection on early flowering and correlated evolutionary changes in the node of the first flower, herkogamy, dichogamy, gas exchange rates and water use efficiency (WUE) were measured under field conditions.

Key Results: Lines selected for early flowering and for low herkogamy showed consistent, statistically significant responses to direct selection. However, there was little or no evidence of correlated evolutionary changes in flowering date, floral traits, gas exchange rates or WUE.

Conclusions: These results suggest that the maturation rate and mating system have evolved independently in Clarkia and that the time limitation hypothesis does not explain the repeated evolution of selfing in this genus, at least through its indirect selection scenario. They also suggest that the life history and physiological components of drought escape are not genetically correlated in Clarkia, and that differences in gas exchange physiology between C. unguiculata and C. exilis have evolved independently of differences in mating system and life history.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app