Add like
Add dislike
Add to saved papers

Maternal nutrient restriction impairs young adult offspring ovarian signaling resulting in reproductive dysfunction and follicle loss.

Reproductive abnormalities are included as health complications in offspring exposed to poor prenatal nutrition. We have previously shown in a rodent model that offspring born to nutrient restriction during pregnancy are born small, enter puberty early, and display characteristics of early ovarian aging as adults. The present study investigated whether key proteins involved in follicle recruitment and growth mediate ovarian follicle loss. Pregnant rats were randomized to a standard diet throughout pregnancy and lactation (CON), or a calorie-restricted (50% of control) diet (UN) during pregnancy. Offspring reproductive phenotype was investigated at postnatal days 4, 27, and 65. Maternal UN resulted in young adult (P65) irregular estrous cyclicity due to persistent estrus, a significant loss of antral follicles, corpora lutea, and an increase in atretic follicles. This decrease in growing follicles in UN offspring appears to be due to increased apoptosis as seen by immunopositive staining of pro-apoptotic factor CASP3 (caspase 3) in ovaries of young adult offspring. UN prepubertal offspring had reduced expression levels of Fshr in antral follicles, which may contribute to a decrease in PI3K/AKT activation evident as a decrease in pAKT immunolocalization in prepubertal antral follicles. Moreover, neonatal ovaries of UN offspring show decreased levels of immunopositive staining for AMHR2 (anti-mullerian hormone receptor 2). Collectively, these data demonstrate that maternal UN during pregnancy impacts ovarian function in offspring as early as P65 and provides a model for understanding the mechanisms driving early life UN-induced follicle loss and reproductive dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app