Add like
Add dislike
Add to saved papers

Pathways of nitric oxide metabolism and operation of phytoglobins in legume nodules: missing links and future directions.

The interaction between legumes and rhizobia leads to the establishment of a beneficial symbiotic relationship. Recent advances in legume - rhizobium symbiosis revealed that various reactive oxygen and nitrogen species including nitric oxide (NO) play important roles during this process. Nodule development occurs with a transition from a normoxic environment during the establishment of symbiosis to a microoxic environment in functional nodules. Such oxygen dynamics are required for activation and repression of various NO production and scavenging pathways. Both the plant and bacterial partners participate in the synthesis and degradation of NO. However, the pathways of NO production and degradation as well as their cross-talk and involvement in the metabolism are still a matter of debate. The plant-originated reductive pathways are known to contribute to the NO production in nodules under hypoxic conditions. Non-symbiotic hemoglobin (phytoglobin) (Pgb) possesses high NO oxygenation capacity, buffers and scavenges NO. Its operation, through a respiratory cycle called Pgb-NO cycle, leads to the maintenance of redox and energy balance in nodules. The role of Pgb/NO cycle under fluctuating NO production from soil needs further investigation for complete understanding of NO regulatory mechanism governing nodule development to attain optimal food security under changing environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app