Add like
Add dislike
Add to saved papers

Joint Bearing and Range Estimation of Multiple Objects from Time-Frequency Analysis.

Sensors 2018 January 20
Direction-of-arrival (DOA) and range estimation is an important issue of sonar signal processing. In this paper, a novel approach using Hilbert-Huang transform (HHT) is proposed for joint bearing and range estimation of multiple targets based on a uniform linear array (ULA) of hydrophones. The structure of this ULA based on micro-electro-mechanical systems (MEMS) technology, and thus has attractive features of small size, high sensitivity and low cost, and is suitable for Autonomous Underwater Vehicle (AUV) operations. This proposed target localization method has the following advantages: only a single snapshot of data is needed and real-time processing is feasible. The proposed algorithm transforms a very complicated nonlinear estimation problem to a simple nearly linear one via time-frequency distribution (TFD) theory and is verified with HHT. Theoretical discussions of resolution issue are also provided to facilitate the design of a MEMS sensor with high sensitivity. Simulation results are shown to verify the effectiveness of the proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app