Add like
Add dislike
Add to saved papers

Noise of a Chargeless Fermi Liquid.

We construct a Fermi liquid theory to describe transport in a superconductor-quantum dot-normal metal junction close to the singlet-doublet (parity changing) transition of the dot. Though quasiparticles do not have a definite charge in this chargeless Fermi liquid, in the case of particle-hole symmetry, a mapping to the Anderson model unveils a hidden U(1) symmetry and a corresponding pseudocharge. In contrast to other correlated Fermi liquids, the back scattering noise reveals an effective charge equal to the charge of Cooper pairs, e^{*}=2e. In addition, we find a strong suppression of noise when the linear conductance is unitary, even for its nonlinear part.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app