Add like
Add dislike
Add to saved papers

Influences of Bifunctional PNP-Pincer Ligands on Low Valent Cobalt Complexes Relevant to CO 2 Hydrogenation.

Inorganic Chemistry 2018 Februrary 6
Pincer ligated coordination complexes bearing bifunctional sites have been at the center of recent developments in reversible hydrogenation catalysis, especially in cases utilizing base metals. The influence of bifunctional ligands on low valent cobalt complexes is detailed here using comparisons between the PNP-pincer ligands MeN[CH2 CH2 (PR2 )]2 and HN[CH2 CH2 (PR2 )]2 (R = i Pr, Cy). Comparative catalytic studies of CO2 hydrogenation show that cobalt(I) precatalysts bearing the tertiary amine ligand dramatically outperform those bearing the secondary amine pincer ligand. Despite strong similarities between the precatalyst ground state structure and the redox potentials of the two systems, ligand bifunctionality was found to be detrimental to catalyst productivity. The enhanced stability imparted by the MeN[CH2 CH2 (PR2 )]2 ligand also enabled isolation and characterization of a zero-valent cobalt dicarbonyl species, which was used to study the catalytically active oxidation state of cobalt in CO2 hydrogenation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app