Add like
Add dislike
Add to saved papers

Dual Drug Delivery System Based on Biodegradable Organosilica Core-Shell Architectures.

To overcome drug resistance, efficient cancer therapeutic strategies using a combination of small-molecule drugs and macromolecule drugs is highly desired. However, because of their significant differences in molecular weight and size, it is difficult to load them simultaneously in one vector and to release them individually. Here, a biodegradable organosilica-based core-shell-structured nanocapsule was designed and used as a dual stimuli-responsive drug vector to solve this problem. Biodegradable organosilica shell coated outside the macromolecule model drug "core" would be disrupted by high glutathione (GSH) levels inside tumor cells, resulting in the escape of the entrapped drugs. Small-molecule drugs capping on the surface of the organosilica shell via pH-responsive imine bonds can be cut and released in the acidic lysosomal environment. Transmission electron microscopy has shown that the framework of the organosilica shell was dissolved and degraded after 8 h incubation with 5 mM GSH. Confocal imaging confirmed that small-molecule and macromolecular drugs were individually released from the nanoparticles because of the pH or redox-triggered degradation under the tumor microenvironment and thus led to the strong fluorescence recovery in the cytoplasm. As expected, these biodegradable organosilica nanoparticles could not release drugs into normal cells but could specifically release them into tumor cells owing to their tumor-triggered targeting capability. This system will serve as an efficient shuttle for multidrug delivery and also provide a potential strategy to overcome drug resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app