Add like
Add dislike
Add to saved papers

Effects of chemically heterogeneous nanoparticles on polymer dynamics: insights from molecular dynamics simulations.

Soft Matter 2018 Februrary 15
The dispersion of solid nanoparticles within polymeric materials is widely used to enhance their performance. Many scientific and technological aspects of the resulting polymer nanocomposites have been studied, but the role of the structural and chemical heterogeneity of the nanoparticles has just started to be appreciated. For example, simulations of polymer films on planar heterogeneous surfaces revealed unexpected, non-monotonic activation energy to diffusion on varying the surface composition. Motivated by these intriguing results, here we simulate via molecular dynamics a different, fully three-dimensional system, in which the heterogeneous nanoparticles are incorporated in a polymer melt. The nanoparticles are roughly spherical assemblies of strongly and weakly attractive sites, in fractions of f and 1 - f, respectively. We show that the polymer diffusion is still characterized by a non-monotonic dependence of the activation energy on f. The comparison with the case of homogeneous nanoparticles clarifies that the effect of the heterogeneity increases on approaching the polymer glass transition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app