JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

CCAT1 stimulation of the symmetric division of NSCLC stem cells through activation of the Wnt signalling cascade.

Gene Therapy 2018 January
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortalities worldwide, yet this condition remains a poorly understood malignancy, and the subgroup of cancer stem cells (CSCs) leading to therapeutic resistance and adverse prognosis have not been well studied. CSCs frequently undergo symmetric division, which facilitates expansion of the stem cell pool, contributing to long-term relapse and therapy failure. CCAT1 could act as a miRNA sponge to influence downstream genes; however, its roles in NSCLC stem cell are unclear. We first identified activation of Wnt signalling in NSCLC. Analysis of the clinical data from a public database showed a significant decrease of the Wnt signalling repressor Let-7c. Using biological and informatics analyses, we hypothesized that CCAT1 stimulated the main factors of the Wnt signalling pathway, of which the three most deregulated genes were further confirmed by western blotting. Axitinib, a Wnt signalling inhibitor, effectively stimulated asymmetric division, similar to Let-7c. CCAT1 inhibition decreased the ratio of symmetric division of stem cells, and both Let-7c and Axitinib significantly abolished CCAT1 induction of symmetric division by inhibiting Wnt signalling. Restoration of Let-7c blocked the CCAT1 effects, forming the CCAT1/Let-7c/Wnt regulatory axis to control the division of lung cancer stem cells. Stimulation of stem cells to divide asymmetrically by delivering Let-7c or suppressive Axitinib could represent prospective strategies for curing lung cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app