Add like
Add dislike
Add to saved papers

Solution Processable 1D Fullerene C 60 Crystals for Visible Spectrum Photodetectors.

Small 2018 March
Visible spectrum photodetector devices fabricated using molecular crystals of carbon C60 are reported. The devices operate efficiently, extending over and beyond the full visible light spectrum (300-710 nm) with a bias voltage tunable responsivity of 4 mA-0.5 mA W-1 . Across this range of wavelengths, the noise equivalent power of these devices remains below 102 nW Hz-1/2 , providing a detectivity of 107 Jones. The noise current in these devices is found to have a strong dependence on both bias voltage and frequency, varying by 4 orders of magnitude from 1 nA Hz-1/2 to 0.1 pA Hz-1/2 . The devices also display a near-linear dependence of photocurrent on light intensity over 4 orders of magnitude, providing a dynamic range approaching 80 dB. The 3 dB bandwidth of the devices is found to be above 102 Hz, while the 18 dB bandwidth exceeds 1 kHz. The transient photocurrents of the devices have a rise time of ≈50 µs and a long fall time of ≈4 ms. The spectral photocurrent of the devices is found to quench gradually with a reduction in temperature from ≈300 K and is fully quenched at temperatures below T ≈ 100 K. Upon reheating, the device performance is fully recovered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app