Add like
Add dislike
Add to saved papers

CCN5 in alveolar epithelial proliferation and differentiation during neonatal lung oxygen injury.

Lung immaturity is the major cause of morbidity and mortality in premature infants, especially those born <28 weeks of gestation. These infants are at high risk of developing respiratory distress syndrome (RDS), a lung disease caused by insufficient surfactant production and immaturity of saccular/alveolar type II epithelial cells in the lung. RDS treatment includes oxygen and respiratory support that improve survival but also increase the risk for bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by arrested alveolarization, airway hyperreactivity, and pulmonary hypertension. The mechanisms regulating normal alveolar development and how injury disrupts normal development to cause BPD are not well understood. We examined the role of the matricellular protein CCN5 (Cysteine-rich protein 61/Connective tissue growth factor/Nephroblastoma-overexpressed protein) in the development of BPD. Cultured non-proliferating alveolar type II cells expressed low levels of CCN5 protein, and displayed higher levels during proliferation. siRNA targeting of CCN5 reduced alveolar type II cell proliferation and migration in cell culture. In a mouse model of hyperoxia-induced BPD, CCN5 protein was increased only in proliferating alveolar type I cells. Alveolar epithelial cells co-expressing markers of type II cells and type I cells also appeared. The results suggest that hyperoxic injury in immature lungs induces proliferation of type I cells and trans-differentiation of type II cells into type I cells. We propose that the mechanism of the injury response in BPD includes CCN5 expression. Study of CCN5 in neonatal alveolar injury will further our understanding of BPD pathophysiology while providing a mechanistic foundation for therapeutic approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app