Add like
Add dislike
Add to saved papers

Radiosensitization of the PI3K inhibitor HS-173 through reduction of DNA damage repair in pancreatic cancer.

Oncotarget 2017 December 23
Activation of PI3K/AKT pathway occurs frequently in tumors and is correlated with radioresistance. The PI3K/AKT pathway can be an important target for improvement of radiotherapy. Although adding of chemotherapy to radiation therapy regimen enhances survival in patients with locally advanced pancreatic cancer, more effective therapies for increasing radiosensitivity are urgently needed. In this study, we investigated whether the novel PI3K inhibitor HS-173 could attenuate radiation-induced up-regulation of DNA damage repair processes and assessed its efficacy as a radio- and chemo-sensitizer. Radiosensitizing effects of HS-173 were tested in human pancreatic cells using clonogenic survival and growth assays. Mechanisms underlying the effects of HS-173 and radiation were determined by assessing cell cycle and DNA damage- repair pathway components, including ataxia-telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The in vivo efficacy of HS-173 in cancer radiotherapy was evaluated using a human tumor xenograft model. HS-173 significantly increased the sensitivity of pancreatic cancer cells to radiation, an effect that was associated with G2/M cell cycle arrest. HS-173 also significantly attenuated DNA damage repair by potently inhibiting ATM and DNA-PKcs, the two major kinases that respond to radiation-induced DNA double-strand breaks (DSBs), resulting in sustained DNA damage. Moreover, the combination of HS-173 and radiation delayed tumor growth and impaired DNA repair in a pancreatic cancer xenograft model, reflecting enhanced radiosensitization. These results showed that HS-173 significantly improved radiotherapy by inhibiting the DNA damage-repair pathway in pancreatic cancer. We therefore suggest that HS-173 may be an effective radiosensitizer for pancreatic cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app