Add like
Add dislike
Add to saved papers

Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency.

Cell Death & Disease 2018 January 19
Autophagy is a catabolic process to degrade both damaged organelles and aggregated proteins in somatic cells. We have recently identified that autophagy is an executor for mitochondrial homeostasis in embryonic stem cell (ESC), and thus contribute to stemness regulation. However, the regulatory and functional mechanisms of autophagy in ESC are still largely unknown. Here we have shown that activation of ULK1 by AMPK is essential for ESC self-renewal and pluripotency. Dysfunction of Ulk1 decreases the autophagic flux in ESC, leading to compromised self-renewal and pluripotency. These defects can be rescued by reacquisition of wild-type ULK1 and ULK1(S757A) mutant, but not ULK1(S317A, S555A and S777A) and kinase dead ULK1(K46I) mutant. These data indicate that phosphorylation of ULK1 by AMPK, but not mTOR, is essential for stemness regulation in ESC. The findings highlight a critical role for AMPK-dependent phosphorylation of ULK1 pathway to maintain ESC self-renewal and pluripotency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app