Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Speciation of common Gram-negative pathogens using a highly multiplexed high resolution melt curve assay.

Scientific Reports 2018 January 19
The identification of the bacterial species responsible for an infection remains an important step for the selection of antimicrobial therapy. Gram-negative bacteria are an important source of hospital and community acquired infections and frequently antimicrobial resistant. Speciation of bacteria is typically carried out by biochemical profiling of organisms isolated from clinical specimens, which is time consuming and delays the initiation of tailored treatment. Whilst molecular methods such as PCR have been used, they often struggle with the challenge of detecting and discriminating a wide range of targets. High resolution melt analysis is an end-point qPCR detection method that provides greater multiplexing capability than probe based methods. Here we report the design of a high resolution melt analysis assay for the identification of six common Gram-negative pathogens; Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Pseudomonas aeruginosa, Salmonella Sp, and Acinetobacter baumannii, and a generic Gram-negative specific 16S rRNA control. The assay was evaluated using a well characterised collection of 113 clinically isolated Gram-negative bacteria. The agreement between the HRM assay and the reference test of PCR and sequencing was 98.2% (Kappa 0.96); the overall sensitivity and specificity of the assay was 97.1% (95% CI: 90.1-99.7%) and 100% (95% CI: 91.78-100%) respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app