Add like
Add dislike
Add to saved papers

Clinical Evaluation of a Blood Assay to Diagnose Paucibacillary Tuberculosis via Bacterial Antigens.

BACKGROUND: The diagnosis of active tuberculosis (TB) cases primarily relies on methods that detect Mycobacterium tuberculosis ( Mtb ) bacilli or their DNA in patient samples (e.g., mycobacterial culture and Xpert MTB/RIF assays), but these tests have low clinical sensitivity for patients with paucibacillary TB disease. Our goal was to evaluate the clinical performance of a newly developed assay that can rapidly diagnose active TB cases by direct detection of Mtb -derived antigens in patients' blood samples.

METHODS: Nanoparticle (NanoDisk)-enriched peptides derived from the Mtb virulence factors CFP-10 (10-kDa culture factor protein) and ESAT-6 (6-kDa early secretory antigenic target) were analyzed by high-throughput mass spectrometry (MS). Serum from 294 prospectively enrolled Chinese adults were analyzed with this NanoDisk-MS method to evaluate the performance of direct serum Mtb antigen measurement as a means for rapid diagnosis of active TB cases.

RESULTS: NanoDisk-MS diagnosed 174 (88.3%) of the study's TB cases, with 95.8% clinical specificity, and with 91.6% and 85.3% clinical sensitivity for culture-positive and culture-negative TB cases, respectively. NanoDisk-MS also exhibited 88% clinical sensitivity for pulmonary and 90% for extrapulmonary TB, exceeding the diagnostic performance of mycobacterial culture for these cases.

CONCLUSIONS: Direct detection and quantification of serum Mtb antigens by NanoDisk-MS can rapidly and accurately diagnose active TB in adults, independent of disease site or culture status, and outperform Mycobacterium -based TB diagnostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app