Add like
Add dislike
Add to saved papers

Physiological response and transcription profiling analysis reveals the role of H 2 S in alleviating excess nitrate stress tolerance in tomato roots.

Soil secondary salinization caused by excess nitrate addition is one of the major obstacles in greenhouse vegetable production. Excess nitrate inhibited the growth of tomato plants, while application of 100 μM H2 S donor NaHS efficiently increased the plant height, fresh and dry weight of shoot and root, root length, endogenous H2 S contents and L-cysteine desulfhydrases activities. NaHS altered the oxidative status of nitrate-stressed plants as inferred by changes in reactive oxygen species (ROS) accumulation and lipid peroxidation accompanied by regulation of the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX). Besides, NaHS increased the nitric oxide (NO) and total S-nitrosothiols (SNOs) contents, nitrate reductase (NR) activities and decreased the S-nitrosoglutathione reductase (GSNOR) activities under nitrate stress. Furthermore, microarray analysis using the Affymetrix Tomato GeneChip showed that 5349 transcripts were up-regulated and 5536 transcripts were down-regulated under NaHS and excess nitrate stress treatment, compared to the excess nitrate stress alone. The differentially expressed genes (log2 fold change >2 or <  -2) of up-regulated (213) and down-regulated (271) genes identified were functionally annotated and subsequently classified into 9 functional categories. These categories included metabolism, signal transduction, defence response, transcription factor, protein synthesis and protein fate, transporter, cell wall related, hormone response, cell death, energy and unknown proteins. Our study suggested exogenous NaHS might enhance excess nitrate stress tolerance of tomato plants by modulating ROS and reactive nitrogen species (RNS) signaling and downstream transcriptional adjustment, such as defence response, signal transduction and transcription factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app