Add like
Add dislike
Add to saved papers

Noise-driven current reversal and stabilization in the tilted ratchet potential subject to tempered stable Lévy noise.

Physical Review. E 2017 November
We consider motion of a particle in a one-dimensional tilted ratchet potential subject to two-sided tempered stable Lévy noise characterized by strength Ω, fractional index α, skew θ, and tempering λ. We derive analytic solutions to the corresponding Fokker-Planck Lévy equations for the probability density. Due to the periodicity of the potential, we carry out reduction to a compact domain and solve for the analog of steady-state solutions which we represent as wrapped probability density functions. By solving for the expected value of the current associated with the particle motion, we are able to determine thresholds for metastability of the system, namely when the particle stabilizes in a well of the potential and when the particle is in motion, for example as a consequence of the tilt of the potential. Because the noise may be asymmetric, we examine the relationship between skew of the noise and the tilt of the potential. With tempering, we find two remarkable regimes where the current may be reversed in a direction opposite to the tilt or where the particle may be stabilized in a well in circumstances where deterministically it should flow with the tilt.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app