Add like
Add dislike
Add to saved papers

Multiplexing topologies and time scales: The gains and losses of synchrony.

Physical Review. E 2017 November
Inspired by the recent interest in collective dynamics of biological neural networks immersed in the glial cell medium, we investigate the frequency and phase order, i.e., Kuramoto type of synchronization in a multiplex two-layer network of phase oscillators of different time scales and topologies. One of them has a long-range connectivity, exemplified by the Erdős-Rényi random network, and supports both kinds of synchrony. The other is a locally coupled two-dimensional lattice that can reach frequency synchronization but lacks phase order. Drastically different layer frequencies disentangle intra- and interlayer synchronization. We find that an indirect but sufficiently strong coupling through the regular layer can induce both phase order in the originally nonsynchronized random layer and global order, even when an isolated regular layer does not manifest it in principle. At the same time, the route to global synchronization is complex: an initial onset of (partial) synchrony in the regular layer, when its intra- and interlayer coupling is increased, provokes the loss of synchrony even in the originally synchronized random layer. Ultimately, a developed asynchronous dynamics in both layers is abruptly taken over by the global synchrony of both kinds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app