Add like
Add dislike
Add to saved papers

Flat bands and compactons in mechanical lattices.

Physical Review. E 2017 November
Local configurational symmetry in lattice structures may give rise to stationary, compact solutions, even in the absence of disorder and nonlinearity. These compact solutions are related to the existence of flat dispersion curves (bands). Nonlinearity can destabilize such compactons. One common flat-band-generating system is the one-dimensional cross-stitch model, in which compactons were shown to exist for the photonic lattice with Kerr nonlinearity. The compactons exist there already in the linear regime and are not generally destructed by that nonlinearity. Smooth nonlinearity of this kind does not permit performing complete stability analysis for this chain. We consider a discrete mechanical system with flat dispersion bands, in which the nonlinearity exists due to impact constraints. In this case, one can use the concept of the saltation matrix for the analytic construction of the monodromy matrix. Besides, we consider a smooth nonlinear lattice with linearly connected massless boxes, each containing two symmetric anharmonic oscillators. In this model, the flat bands and discrete compactons also readily emerge. This system also permits performing comprehensive stability analysis, at least in the anticontinuum limit, due to the reduced number of degrees of freedom. In both systems, there exist two types of localization. The first one is the complete localization, and the second one is the more common exponential localization. The latter type is associated with discrete breathers (DBs). Two principal mechanisms for the loss of stability are revealed. The first one is the possible internal instability of the symmetric and/or antisymmetric solution in the individual unit cell of the chain. One can interpret this instability pattern as internal resonance between the compacton and the DB. The other mechanism is global instability related to resonance of the stationary solution with the propagation frequencies. Different instability mechanisms lead to different bifurcations at the stability threshold.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app