Add like
Add dislike
Add to saved papers

Numerical design of a T-shaped microfluidic device for deformability-based separation of elastic capsules and soft beads.

Physical Review. E 2017 November
We propose a square cross-section microfluidic channel with an orthogonal side branch (asymmetric T-shaped bifurcation) for the separation of elastic capsules and soft beads suspended in a Newtonian liquid on the basis of their mechanical properties. The design is performed through three-dimensional direct numerical simulations. When suspended objects start near the inflow channel centerline and the carrier fluid is equally partitioned between the two outflow branches, particle separation can be achieved based on their deformability, with the stiffer ones going "straight" and the softer ones being deviated to the "side" branch. The effects of the geometrical and physical parameters of the system on the phenomenon are investigated. Since cell deformability can be significantly modified by pathology, we give a proof of concept on the possibility of separating diseased cells from healthy ones, thus leading to illness diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app