Add like
Add dislike
Add to saved papers

Field dynamics inference via spectral density estimation.

Physical Review. E 2017 November
Stochastic differential equations are of utmost importance in various scientific and industrial areas. They are the natural description of dynamical processes whose precise equations of motion are either not known or too expensive to solve, e.g., when modeling Brownian motion. In some cases, the equations governing the dynamics of a physical system on macroscopic scales occur to be unknown since they typically cannot be deduced from general principles. In this work, we describe how the underlying laws of a stochastic process can be approximated by the spectral density of the corresponding process. Furthermore, we show how the density can be inferred from possibly very noisy and incomplete measurements of the dynamical field. Generally, inverse problems like these can be tackled with the help of Information Field Theory. For now, we restrict to linear and autonomous processes. To demonstrate its applicability, we employ our reconstruction algorithm on a time-series and spatiotemporal processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app