Add like
Add dislike
Add to saved papers

Suppression of crystalline fluctuations by competing structures in a supercooled liquid.

Physical Review. E 2017 October
We propose a geometrical characterization of amorphous liquid structures that suppress crystallization by competing locally with crystalline order. We introduce for this purpose the crystal affinity of a liquid, a simple measure of its propensity to accumulate local crystalline structures on cooling. This quantity is explicitly related to the high-temperature structural covariance between local fluctuations in crystal order and that of competing liquid structures: favoring a structure that, due to poor overlap properties, anticorrelates with crystalline order reduces the affinity of the liquid. Using a lattice model of a liquid, we show that this quantity successfully predicts the tendency of a liquid to either accumulate or suppress local crystalline fluctuations with increasing supercooling. We demonstrate that the crystal affinity correlates strongly with the crystal nucleation rate and the crystal-liquid interfacial free energy of the low-temperature liquid, making our theory a predictive tool to determine which amorphous structures enhance glass-forming ability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app