Add like
Add dislike
Add to saved papers

Topological defects in an unconfined nematic fluid induced by single and double spherical colloidal particles.

Physical Review. E 2017 October
We present numerical solutions to the Landau-de Gennes free-energy model under the one-constant approximation for systems of single and double spherical colloidal particles immersed in an otherwise uniformly aligned nematic liquid crystal. A perfect homeotropic surface anchoring of liquid-crystal molecules on the spherical surface is considered. A large parameter space is carefully examined, including those in the free-energy model and those describing the dimer configurations and the background liquid-crystal orientation. The stability of the resulting liquid-crystal defects appearing in the neighborhood of the colloidal dimer pair is analyzed in light of the numerical results for their free energies. A number of scenarios are considered: a free dimer pair in a nematic fluid where the free-energy ground states are described in terms of a phase diagram, and a constrained dimer pair where the interparticle distance and the relative orientation of the distance vector to the nematic director can be manipulated. We pay particular attention to the nonsymmetric solutions, which yield several metastable defect states that can be observed in real systems. The high-precision numerical calculations are based on a spectral method, which is an enabling factor that allows us to compare the subtle difference in the free energies of different defect structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app