Add like
Add dislike
Add to saved papers

Force percolation transition of jammed granular systems.

Physical Review. E 2017 October
The mechanical and transport properties of jammed materials originate from an underlying percolating network of contact forces between the grains. Using extensive simulations we investigate the force-percolation transition of this network, where two particles are considered as linked if their interparticle force overcomes a threshold. We show that this transition belongs to the random percolation universality class, thus ruling out the existence of long-range correlations between the forces. Through a combined size and pressure scaling for the percolative quantities, we show that the continuous force percolation transition evolves into the discontinuous jamming transition in the zero pressure limit, as the size of the critical region scales with the pressure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app