Add like
Add dislike
Add to saved papers

Emergence of biaxial nematic phases in solutions of semiflexible dimers.

Physical Review. E 2017 October
We investigate the isotropic, uniaxial nematic and biaxial nematic phases, and the transitions between them, for a model lyotropic mixture of flexible molecules consisting of two rigid rods connected by a spacer with variable bending stiffness. We apply density-functional theory within the Onsager approximation to describe strictly excluded-volume interactions in this athermal model and to self-consistently find the orientational order parameters dictated by its complex symmetry, as functions of the density. Earlier work on lyotropic ordering of rigid bent-rod molecules is reproduced and extended to show explicitly the continuous phase transition at the Landau point, at a critical bend angle of 36^{∘}. For flexible dimers with no intrinsic biaxiality, we find that a biaxial nematic phase can nevertheless form at a sufficiently high density and low bending stiffness. For bending stiffness κ>0.86k_{B}T, this biaxial phase manifests as dimer bending fluctuations occurring preferentially in one plane. When the dimers are more flexible, κ<0.86k_{B}T, the modal shape of the fluctuating dimer is a V with an acute opening angle, and one of the biaxial order parameters changes sign, indicating a rotation of the directors. These two regions are separated by a narrow strip of uniaxial nematic in the phase diagram, which we generate in terms of the spacer stiffness and particle density.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app