Add like
Add dislike
Add to saved papers

Similarity of ensembles of trajectories of reversible and irreversible growth processes.

Physical Review. E 2017 October
Models of bacterial growth tend to be "irreversible," allowing for the number of bacteria in a colony to increase but not to decrease. By contrast, models of molecular self-assembly are usually "reversible," allowing for the addition and removal of particles to a structure. Such processes differ in a fundamental way because only reversible processes possess an equilibrium. Here we show at the mean-field level that dynamic trajectories of reversible and irreversible growth processes are similar in that both feel the influence of attractors, at which growth proceeds without limit but the intensive properties of the system are invariant. Attractors of both processes undergo nonequilibrium phase transitions as model parameters are varied, suggesting a unified way of describing typical properties of reversible and irreversible growth. We also establish a connection at the mean-field level between an irreversible model of growth (the magnetic Eden model) and the equilibrium Ising model, supporting the findings made by other authors using numerical simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app