Add like
Add dislike
Add to saved papers

Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas.

Physical Review. E 2017 October
The interaction of dense plasmas with an intense laser under a strong external magnetic field has been investigated. When the cyclotron frequency for the ambient magnetic field is higher than the laser frequency, the laser's electromagnetic field is converted to the whistler mode that propagates along the field line. Because of the nature of the whistler wave, the laser light penetrates into dense plasmas with no cutoff density, and produces superthermal electrons through cyclotron resonance. It is found that the cyclotron resonance absorption occurs effectively under the broadened conditions, or a wider range of the external field, which is caused by the presence of relativistic electrons accelerated by the laser field. The upper limit of the ambient field for the resonance increases in proportion to the square root of the relativistic laser intensity. The propagation of a large-amplitude whistler wave could raise the possibility for plasma heating and particle acceleration deep inside dense plasmas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app