Add like
Add dislike
Add to saved papers

Rayleigh-Taylor instability in accelerated elastic-solid slabs.

Physical Review. E 2017 December
We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ_{2}, shear modulus G, and thickness h, placed over a semi-infinite ideal fluid of density ρ_{1}<ρ_{2}. It extends previous results for Atwood number A_{T}=1 [B. J. Plohr and D. H. Sharp, Z. Angew. Math. Phys. 49, 786 (1998)ZAMPA80044-227510.1007/s000330050121] to arbitrary values of A_{T} and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ_{2}gh/G≤2(1-A_{T})/A_{T}.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app