Add like
Add dislike
Add to saved papers

Exact solution of the critical Ising model with special toroidal boundary conditions.

Physical Review. E 2017 December
The Ising model in two dimensions with special toroidal boundary conditions is analyzed. These boundary conditions, which we call duality-twisted boundary conditions, may be interpreted as inserting a specific defect line ("seam") in the system, along noncontractible circles of the cylinder, before closing it into a torus. We derive exact expressions for the eigenvalues of a transfer matrix for the critical ferromagnetic Ising model on the M×N square lattice wrapped on the torus with a specific defect line. As a result we have obtained analytically the partition function for the Ising model with such boundary conditions. In the case of infinitely long cylinders of circumference L with duality-twisted boundary conditions we obtain the asymptotic expansion of the free energy and the inverse correlation lengths. We find that the ratio of subdominant finite-size correction terms in the asymptotic expansion of the free energy and the inverse correlation lengths should be universal. We verify such universal behavior in the framework of a perturbating conformal approach by calculating the universal structure constant C_{n1n} for descendent states generated by the operator product expansion of the primary fields. For such states the calculations of an universal structure constants is a difficult task, since it involves knowledge of the four-point correlation function, which in general is not fixed by conformal invariance except for some particular cases, including the Ising model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app