Add like
Add dislike
Add to saved papers

Supercritical Grüneisen parameter and its universality at the Frenkel line.

We study the thermomechanical properties of matter under extreme conditions deep in the supercritical state, at temperatures exceeding the critical one by up to four orders of magnitude. We calculate the Grüneisen parameter γ and find that on isochores it decreases with temperature from 3 to 1, depending on the density. Our results indicate that from the perspective of thermomechanical properties, the supercritical state is characterized by a wide range of γ's which includes solidlike values-an interesting finding in view of the common perception of the supercritical state as being an intermediate state between gases and liquids. We rationalize this result by considering the relative weights of oscillatory and diffusive components of the supercritical system below the Frenkel line. We also find that γ is nearly constant at the Frenkel line above the critical point and explain this universality in terms of the pressure and temperature scaling of system properties along the lines where particle dynamics changes qualitatively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app