Add like
Add dislike
Add to saved papers

Steady diffusion in a drift field: A comparison of large-deviation techniques and multiple-scale analysis.

Physical Review. E 2017 September
A particle with internal unobserved states diffusing in a force field will generally display effective advection-diffusion. The drift velocity is proportional to the mobility averaged over the internal states, or effective mobility, while the effective diffusion has two terms. One is of the equilibrium type and satisfies an Einstein relation with the effective mobility while the other is quadratic in the applied force. In this contribution we present two new methods to obtain these results, on the one hand using large deviation techniques and on the other by a multiple-scale analysis, and compare the two. We consider both systems with discrete internal states and continuous internal states. We show that the auxiliary equations in the multiple-scale analysis can also be derived in second-order perturbation theory in a large deviation theory of a generating function (discrete internal states) or generating functional (continuous internal states). We discuss that measuring the two components of the effective diffusion give a way to determine kinetic rates from only first and second moments of the displacement in steady state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app