Add like
Add dislike
Add to saved papers

Noise-induced torus bursting in the stochastic Hindmarsh-Rose neuron model.

Physical Review. E 2017 September
We study the phenomenon of noise-induced torus bursting on the base of the three-dimensional Hindmarsh-Rose neuron model forced by additive noise. We show that in the parametric zone close to the Neimark-Sacker bifurcation, where the deterministic system exhibits rapid tonic spiking oscillations, random disturbances can turn tonic spiking into bursting, which is characterized by the formation of a peculiar dynamical structure resembling that of a torus. This phenomenon is confirmed by the changes in dispersion of random trajectories as well as the power spectral density and interspike intervals statistics. In particular, we show that as noise increases, the system undergoes P and D bifurcations, transitioning from order to chaos. We ultimately characterize the transition from stochastic (tonic) spiking to bursting by stochastic sensitivity functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app