Add like
Add dislike
Add to saved papers

Predictability of escape for a stochastic saddle-node bifurcation: When rare events are typical.

Physical Review. E 2017 September
Transitions between multiple stable states of nonlinear systems are ubiquitous in physics, chemistry, and beyond. Two types of behaviors are usually seen as mutually exclusive: unpredictable noise-induced transitions and predictable bifurcations of the underlying vector field. Here, we report a different situation, corresponding to a fluctuating system approaching a bifurcation, where both effects collaborate. We show that the problem can be reduced to a single control parameter governing the competition between deterministic and stochastic effects. Two asymptotic regimes are identified: When the control parameter is small (e.g., small noise), deviations from the deterministic case are well described by the Freidlin-Wentzell theory. In particular, escapes over the potential barrier are very rare events. When the parameter is large (e.g., large noise), such events become typical. Unlike pure noise-induced transitions, the distribution of the escape time is peaked around a value which is asymptotically predicted by an adiabatic approximation. We show that the two regimes are characterized by qualitatively different reacting trajectories with algebraic and exponential divergences, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app