Add like
Add dislike
Add to saved papers

Microbial community structure of sea spray aerosols at three California beaches.

We characterized the microbial communities in sea spray aerosols (SSA), water and sand of three beaches in central California (Cowell Beach, Baker Beach and Lovers Point) by sequencing the V4 region of the 16S rRNA gene. Average concentrations of 16S rRNA genes in SSA ranged from 2.4 × 104 to 1.4 × 105 gene copies per m3 of air. A total of 9781 distinct OTUs were identified in SSA and of these, 1042 OTUs were found in SSA of all beaches. SSA microbial communities included marine taxa, as well as some associated with the terrestrial environment. SSA taxa included organisms that play important roles in biogeochemical cycling of elements such as Planctomyces and Synechococcus, as well as those representing potential pathogens and fecal indicator bacteria including Staphylococcus epidermidis and Enterococcus spp. There were a large number of shared OTUs among SSA and water, and there was relatively high similarity between SSA and water communities. Results are consistent with a conceptual model where SSA is generated by breaking waves and bubble bursting in marine waters and that enables the transport of microorganisms from the sea to sand or other environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app