Add like
Add dislike
Add to saved papers

Collapse Transitions of Proteins and the Interplay Among Backbone, Sidechain, and Solvent Interactions.

Proteins can collapse into compact globules or form expanded, solvent-accessible, coil-like conformations. Additionally, they can fold into well-defined three-dimensional structures or remain partially or entirely disordered. Recent discoveries have shown that the tendency for proteins to collapse or remain expanded is not intrinsically coupled to their ability to fold. These observations suggest that proteins do not have to form compact globules in aqueous solutions. They can be intrinsically disordered, collapsed, or expanded, and even form well-folded, elongated structures. This ability to decouple collapse from folding is determined by the sequence details of proteins. In this review, we highlight insights gleaned from studies over the past decade. Using a polymer physics framework, we explain how the interplay among sidechains, backbone units, and solvent determines the driving forces for collapsed versus expanded states in aqueous solvents. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see https://www.annualreviews.org/page/journal/pubdates for revised estimates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app