Add like
Add dislike
Add to saved papers

R-Spondin-2 Is Upregulated in Idiopathic Pulmonary Fibrosis and Affects Fibroblast Behavior.

Idiopathic pulmonary fibrosis (IPF) is characterized by the expansion of the myofibroblast population, excessive extracellular matrix accumulation, and destruction of the lung parenchyma. The R-spondin family (RSPO) comprises a group of proteins essential for development. Among them, RSPO2 is expressed primarily in the lungs, and its mutations cause severe defects in the respiratory tract. Interestingly, RSPO2 participates in the canonical Wingless/int1 pathway, a critical route in the pathogenesis of IPF. Thus, the aim of this study was to examine the expression and putative role of RSPO2 in this disease. We found that RSPO2 and its receptor leucine-rich G protein-coupled receptor 6 were upregulated in IPF lungs, where they localized primarily in fibroblasts and epithelial cells. Stimulation of IPF and normal lung fibroblasts with recombinant human RSPO2 resulted in the deregulation of numerous genes, although the transcriptional response was essentially distinct. In IPF fibroblasts, RSPO2 stimulation induced the up- or downregulation of several genes involved in the Wingless/int1 pathway (mainly from noncanonical signaling). In both normal and IPF fibroblasts, RSPO2 modifies the expression of genes implicated in several pathways, including the cell cycle and apoptosis. In accordance with gene expression, the stimulation of normal and IPF fibroblasts with RSPO2 significantly reduced cell proliferation and induced cell death. RSPO2 also inhibited collagen production and increased the expression of matrix metalloproteinase 1. Silencing RSPO2 with shRNA induced the opposite effects. Our findings demonstrate, for the first time to our knowledge, that RSPO2 is upregulated in IPF, where it appears to have an antifibrotic role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app