JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Investigation on the Thermodynamic Dissociation Kinetics of Photosystem II Supercomplexes To Determine the Binding Strengths of Light-Harvesting Complexes.

The photosystem II (PSII) supercomplex splits water utilizing light energy and is composed of a core dimer complex surrounded by light-harvesting complexes (LHCs). In green algae, the major LHCs which are LHCII trimers have thus far been categorized into strongly, moderately, or loosely binding LHCII trimers based on their predicted binding to core complexes. However, the binding energies have been indirectly predicted based on the presence or absence of LHCII trimers in the PSII supercomplex under electron microscopy and have not been determined experimentally. In this study, we investigated the binding of LHCII trimers by analyzing thermodynamic dissociation kinetics using isolated PSII supercomplexes. We identified two activation energies for dissociation of LHCII trimers: 54 ± 19 and 134 ± 8 kJ/mol. This result indicated the types of intermolecular interactions between LHCII trimers and core complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app